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Cumulative initial-state-selected reaction cross sections of the H+ D2 and D+ H2 systems are analyzed for
collision energies up to 1.3 eV. Initial states of the diatom with rotational quantum numbersj0 ) 0-4 and
vibrational quantum numberV0 ) 0 are considered. The Liu-Siegbahn-Truhlar-Horowitz (LSTH) potential
energy surface is taken as interaction potential. The geometric phase is ignored but no further (nonnumerical)
approximations are made. The cross sections are computed by propagating wave packets employing the
multiconfiguration time-dependent Hartree scheme. The reactive flux, which determines the integral cross
section, is evaluated through the interaction of the wave packet with a complex absorbing potential. The
initial-state-selected integral cross sections,σj0(E), in particular those forj0 ) 0, show weak oscillations,
which we attribute to transition state resonances associated with excitations of the bending motion. Some of
the present results are discussed in comparison with results obtained by using the coupled states approximation.

1. Introduction

The H + H2 system and its isotopic variants are certainly
prototype systems for studying quantum molecular reaction
dynamics. As quantum reactive scattering is a difficult problem
as such, the smallest system plays a distinguished role. Over
more than 30 years, this system has been extensively studied
quantum mechanically, and many new methods have been
developed for or tested on it. Already in 1969 McCullough and
Wyatt investigated the quantal flux in the vicinity of the saddle
point region for collinear H+ H2 scattering.1,2 This study is
also a very early example of using the time-dependent picture.
Full 3D calculations to determine total or differential cross
sections appeared about 10 years later. A large variety of
methods have been used for this purpose, e.g., close coupling
expansion in hyperspheric coordinates,3-5 complex Kohn6-9 and
log-derivative Kohn10,11variational calculations (the latter being
equivalent to an R-matrix approach), the generalized Newton
variational principle,12 the Toeplitz approach,13 and wave packet
propagation methods.14,15For further references see the review
of W. H. Miller.16

The effect of the initial rotation on the reactivity for the H+
H2 system and its isotopic variants has been investigated both
quasiclassically17-23 and quantum mechanically (QM).13,24-26

The quasiclassical trajectory (QCT) calculations for the H+
H2

17,18 and D+ H2
19-23 systems showed, at low translational

energies, a decrease of the reaction cross sections with increasing
rotational excitation for smallj0’s. (Initial quantum numbers
are always specified by the index 0.) For largerj0’s the opposite
effect is observed. In the QCT calculations a decrease of the
cross sections with increasingj0’s starts in the vicinity of the
threshold, which is shifted upward with increasingj0. The QM
calculations for the D+ H2(V0 ) 1, j0 ) 0-3) system24 also
indicate the negative influence of initial rotation on reactivity,

but here the same threshold for allj0’s is obtained. In the QCT
calculations for the H+ D2 system22,23an increase of reactivity
with increasing rotational excitation has been observed in the
post threshold region.

In the present paper we will solve the H+ D2 and D+ H2

reactive scattering problem by wave packet propagation and
adopt the multi-configuration time-dependent Hartree (MCTDH)
algorithm to perform the propagation. MCTDH27-29 is a
propagation method that can be very efficient, in particular for
large systems.30,31 The H + D2 and D + H2 systems studied
here are too small to fully exploit the high efficiency of
MCTDH, but when turning to larger reactive systems we expect
the use of MCTDH to be of considerable advantage. A recent
calculation on reaction rates of H+ CH4

32 further supports this
expectation.

The present work was partially motivated by the critique by
Aoiz et al.26 of our previous study of the H+ D2 system.33

There we used thecoupled states(also known ascentrifugal
sudden) (CS) approximation to simplify the Hamiltonian (see
Section 2.1). Using the CS approximation, it was found that
for collision energies between 0.4 and 0.95 eV, the initial
rotation of the D2-diatom slightly hinders reaction. Using the
exact kinetic energy operator, however, Aoiz et al. showed that
internal rotation slightly enhances reactionsat least for the
particular energy (0.54 eV) they probed.26 The approximate
treatment of the kinetic energy by the CS approximation hence
reverses the ordering of theσj0 cross sections.

In the present paper we investigate the initial-state-selected
reaction cross sections of the H+ D2 and D + H2 systems.
The diatom is assumed to be initially in its vibrational ground
state,V0 ) 0, and in a specific rotational state,j0 ) 0,1,2,3, or
4. The range of collision energies investigated is 0.3-1.3 eV.
The geometric phase was ignored. It has been shown that the
geometric phase effect cancels out when summing over total
J.34
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We confirm the results of Aoiz et al., but more importantly,
we find that a weak resonance structure appears in theσj0)0(E)
cross section. Thus, in contrast to the CS results, the resonant
structure is not completely washed out by the summation over
the totalJ’s. Despite its very weak appearance, this is, to our
knowledge, the first transition state resonance reported for a
calculation on the total cross section of the H+ H2 system or
its isotopic variants.

2. Theory

2.1. Hamiltonian. The triatomic scattering system is de-
scribed by body-fixed (BF) Jacobian coordinatesR,r,θ and by
three Euler angles relating the BF to the space-fixed system.
Here, R denotes the distance between the projectile and the
center of mass of the diatom,r is the internuclear distance of
the diatom, andθ the angle betweenR and r .

As the total angular momentum operatorĴ commutes with
the Hamiltonian, one may consider the individualJ-components,
ΨJ, of the total wave function. One finds thatΨJ depends only
on the third Euler angleφ, which is the azimuthal angle
specifying the orientation of the BF-system aroundR. As only
the kinetic energy depends onφ, it is advantageous to replace
φ by the momentum variableK, which is the projection of the
total angular momentumJ onto R (i.e., onto the BFz-axis).
Hence we expand the wave function

and write the time-dependent Schro¨dinger equation as35-37

where

and

The symbolsµR andµr denote the usual reduced masses andV
is the interaction potential. The interpretation of eq 2 is clear.
The motion of the BF-system couples the variousK-states
through the coupling termsHK,K(1

J (Coriolis coupling). When
dropping these terms, one arrives at the well-knowncoupled
statesor centrifugal sudden(CS) approximation.38-40 Within
the CS approximation the quantum numberK is conserved and
thus treated as a parameter, reducing the four-dimensional
problem to a three-dimensional one.

Note that in the BF-systemJz ) jz ) K holds (becauselz ) 0
by construction). The initialK is thus the initial magnetic
rotational quantum number of the diatom.

In the present work we will treat the scattering problem
beyond the CS approximation, including the full Hamiltonian
(eqs 3, 4), but we will occasionally compare with CS results.

2.2. MCTDH. The scattering process is studied within a time-
dependent framework and the wave packet propagation is
performed by using the multi-configuration time-dependent
Hartree (MCTDH) approach. As the MCTDH method has
recently been thoroughly reviewed,27 the technique is discussed
here only very briefly.

The ansatz for the MCTDH wave function off degrees of
freedom reads

where theQi denote thef nuclear coordinates, theAj1...jf are the
time-dependent expansion coefficients, and theæjκ

(κ)(Qκ,t) are
nκ expansion functions for each degree of freedomκ, known as
single-particle functions(spf’s). Giving the ansatz eq 7, equa-
tions of motion for the expansion coefficients and spf’s are
derived from the Dirac-Frenkel variational principle, as
discussed in refs 27-29. Here we only note that the MCTDH
equations of motion are nonlinear and comparatively compli-
cated. However, there are much fewer equations to be solved
as compared to the standard method (i.e., expanding the wave
function in a time-independent product basis set). This is because
the number of spf’s,nκ, is in general considerably smaller than
the number,Nκ, of primitive basis functions or grid points
needed to represent the spfæ(κ).

The MCTDH algorithm can be very efficient when treating
large systems. This is demonstrated by recent calculations of
the absorption spectrum of pyrazine30,31where a 24-dimensional
wave packet was propagated on two coupled potential energy
surfaces.

Returning to the MCTDH ansatz (eq 7) we note that the spf’s
need not be one-dimensional but may depend on several
coordinates.27,31,41In the present investigation, the two degrees
of freedomθ and K are combined and are represented by a
single set of spf’s. For the three-particle scattering problem under
discussion the MCTDH wave function thus reads

where the variableK takes, of course, only integer values.
For an efficient implementation of the MCTDH algorithm,

it is necessary for the system Hamiltonian to be given in product
form, i.e., the Hamiltonian must be represented as a linear
combination of products of one-dimensional operators27,29

This treatment allows us to write the Hamiltonian matrix
elements and mean fields, which determine the time evolution
according to the MCTDH equations of motion, as sums of
products of one-dimensional integrals.

The kinetic energy operator which we use is, as is usually
the case, of the required product form. However, the interaction
potential, for which we adopted the Liu-Siegbahn-Truhlar-
Horowitz (LSTH) potential energy surface of H3 in its lowest
electronic state,42-44 does not possess a product form. We thus
generated an accurate fit toVLSTH using the algorithm described
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in refs 27,45,46. The potential then assumes the form

whereD,υ(2) andυ(3) are given numerically, i.e., they are defined
only on the grid points.

2.3. Initial State. The initial state is taken as a single Hartree
product of a Gaussian wave packet inR, a vibrational eigen-
function in r, and a rotational eigenfunction inθ; i.e.,

where j0,m0,V0 are the initial ro-vibrational quantum numbers
of the free diatom.Pj

m
denotes the associated Legendre

function, andδ is the Kronecker symbol. The parameterR0

should be chosen such that the initial wave function is placed
outside the range of the potential. However, the initial wave
function may be put much closer to the scattering center if a
correction is made on the wave function and its energy
distribution∆E (see below) such as to account for the influence
of the tail of the potential. We have used here the so-called
adiabatic correctionscheme which is discussed in detail in refs
27,47.

The momentump0 and the widthdR determine the energy
distribution∆(E) of the initial wave packet. We have previously
determined this energy distribution by evaluating the distorted
wave ø̃Ε(R), which will be defined below, by the Wentzel-
Kramers-Brillouin (WKB) approximation. We now prefer to
generate this function numerically using the Numerov method48

since this is very easily done.
The energy distribution of the initial state is defined as

where ø̃E(R) is the Jost-solution49 of the vibrational adiabatic
Hamiltonian, i.e.,

subject to the boundary condition

with

The vibrationally adiabatic potentialVj0m0V0

J,ad is defined by eq 17

of ref 33 (see also refs 27,47).E denotes the total energy and
Ej0V0 the energy of the diatom in its (j0V0) ro-vibrational state.

2.4. Analysis of Reactive Flux; Cross Sections.The initial-
state-selected reaction probabilities,Pj0m0V0

J (E), are determined
by analyzing the reactive flux into the arrangement channel of
the products. This was achieved by employing a recently
developed combined flux operator/complex absorbing potential
approach.27,50In reactive scattering complex absorbing potentials
(CAP’s) have been used for the first time by Neuhauser and
Baer,51 and Seideman and Miller52 have related the cumulative
reaction probability to a trace over the CAP times a Green’s
function.

In the present work the CAP,-iW, is defined as a sum of
two one-dimensional potentials

with the generic form of the arrangement CAPs given by

whereh denotes the Heaviside step function,QC is the point at
which the CAP starts,ηQ a is strength parameter, andâQ denotes
the order of the monomial CAP.

The initial-state-selected reaction probabilities are then related
to the interaction of the time evolved wave packetΨJ(t) with
the product arrangement channel CAP,Wr. The working
equation reads50

where Re denotes the “real part of”, and where

The energy distribution∆(E) (see eq 15) of the initial wave
packet determines the energy range, for which all cumulative
reaction probabilities can be computed by a single propagation.

Having computed the reaction probabilitiesPj0m0V0

J (E), the
reaction cross sections can readily be determined

wherekj0V0 is given by eq 18.
The rotationally temperature-averaged reaction cross sections

shown in Section 3 are computed similarly as discussed in refs
33,53.

2.5. Numerical Details.The numerical parameters for the
reactive scattering calculation discussed here are chosen in a
fashion similar to that of our previous calculation on the H+
D2 system,33 where the CS approximation had been adopted.
Here, only some additional parameters are to be mentioned. The
number of spf’s for the combined rotational degrees of freedom
(θ,K), n3, depends on the totalJ quantum number. To achieve
convergence we varied the number of spf’s between 12 (J ) 0)
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and 32 (J ) 12-14). For J > 14 it was decreased with
increasingJ, arriving at 21 spf’s forJ ) 30. The length of the
K grid depends onJ as well. The whole allowedK range, i.e.,
[-J,J] is necessary for smallJ’s (up toJ ) 10). For the values
J > 10 a reduced range [-10,10] was sufficient. The number
of grid points for the angularθ degree of freedom is reduced
from 3133 to 23. The values ofηQ is 0.001 andηQ ) 3 for Q )
Ror r. The number of spf’s for theRandr degrees of freedom,
nR andnr, are 18 and 16, respectively.

The initial momentump0, and widthdR of the Gaussian wave
packetø0 (eq 12) were chosen in accordance with the desired
initial energy distribution∆(E) (eq 15). For energies up to 1.3
eV the valuesp0 ) -7.0(-7.9) anddR ) 0.24(0.21) for the H
+ D2 (D + H2) have been chosen. The number of natural
potentials wasmr ) 12 andmθ ) 9 for the product representa-
tion of the LSTH potential energy surface (see eq 10).

Each single propagation is specified by a set of initial
quantum numbers (j0,m0,J). Total angular momentum values up
to Jmax ) 30 were necessary to obtain converged results in the
energy range under investigation (up to 1.3 eV). Hence 445
independent wave packet propagations were performed for each
system. The computational cost for a single calculation varies
between 30 min (J ) 0) and 3 h (J ) 12-14) CPU-time on a
Dec-alpha 21264 AXP-500 MHz processor.

We believe that the cross sections computed are correct to
1% or at most 2% for collision energies below 1.2 eV. At higher
energies the accuracy gradually deteriorates because the initial
energy distribution∆(E) becomes small.

3. Results and Discussion

3.1. H + D2(W0 ) 0) f HD + D Reaction. In Figure 1 the
rotationally averaged (T ) 300 K) reaction cross sections are
depicted as a function of the collision energy. The two lower
curves, corresponding to the scale of the right of the figure,
show the results for the H+ D2(V0 ) 0) reaction obtained by
the present (solid line) and the former CS33 (dotted line)
MCTDH calculations. For low translational energies (up to 0.7
eV) the CS results are in a quite good agreement with the exact

ones. Considerable differences occur at higher energies. The
CS cross section is larger than the exact one, and the difference
increases with increasing collision energy. A detailed analysis
of the partial cross sections,σj0m0V0J(E), given by eq 23, shows
that the difference in the cross sections for the CS vs exact
calculations is due to the partial cross sections corresponding
to high values of theJ quantum number. The higher theJ value
is, the more significant the role of theK-coupling appears to
be, and therefore the more pronounced are the differences
between the two calculations.

Figure 2 shows the initial-state-selected integral cross sections,
σj0V0(E), for theH + D2(V0,j0) f D + HD reaction forV0 ) 0
and j0 ) 0,...,4 as a function of translational energy. One may
infer from the figure that the rotational excitations slightly
increase the reaction cross section. This result is in agreement
with QCT and QM calculations.22,23,26The opposite effect has
been found in our previous CS calculations33 for the energy
range from post-threshold up to ca. 0.95 eV. This indicates that
the CS approximation becomes less reliable the more detailed
the information is.

Let us consider this problem in detail. Using the CS
approximation the magnetic quantum numberK remains un-
changed during the reaction. Using the exact kinetic energy,K
changes and may be characterized by its average valueK0(t)
and width∆K(t) as a function of the propagation time. For the
calculations with an initialK0 ≡ m0 > 0 value the functions
K0(t) show a general tendency to decrease during the reaction
time, where the rate of decrease increases with increasing total
J quantum number. As the transition state is linear for the H+
D2 system, the reactivity forK ) 0 is larger than forK * 0.
One thus may conclude that the CS approximation will
overestimate the reactivity of them0 ) 0 channels, but
underestimate the reactivity of them0 > 0 channels. Because
the role of them0 > 0 channels for the givenj0 increases with
growing j0, the overestimation of the CS approximation in the
total σj0V0 cross section for smallj0’s gradually turns into a
underestimation for largej0’s. In the case of the present reaction
it leads to the observed re-ordering of theσj0V0 cross sections
with j0. The fact that the CS approximation cannot account for

Figure 1. Thermally averaged reaction cross sections. The solid lines
represent present MCTDH exact calculations, where the lower curve
(scale on the right) is for H+ D2(V0 ) 0) and the upper (scale on the
left) for the D + H2(V0 ) 0) reaction. The dashed line represents the
MCTDH CS calculation for the H+ D2(V0 ) 0) reaction taken from
ref 33. All cross sections are rotationally averaged over theT ) 300 K
Boltzmann distribution.

Figure 2. Initial-state-selected cross sections,σj0V0, for the H+ D2(V0

) 0) reaction as a function of translational energy (j0 ) 0: solid line,
j0 ) 1: dotted line,j0 ) 2: dashed line,j0 ) 3: long-dashed line,j0 )
4: dot-dashed line). The insert displays theσj0V0 near the first transition
state resonance.
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the initial rotational effect on the reactivity indicates once more
the important role of theK-coupling.

Table 1 compares the present MCTDH results with exact QM
calculations of initial-state-selected integral cross sections for
the H + D2(V0 ) 0) f HD + D reaction taken from the
literature.10,26,54,55The comparison gives an excellent agreement
of the MCTDH results with the literature values.

Besides the initial rotational effect, the presence of weak
transition state resonances can be observed in Figure 2. The
resonance structure is most pronounced for thej0 ) 0 case and
disappears with increasingj0. The insert in Figure 2 shows the
cross sections near the first transition state resonance. Thej0 )
0 cross section is here larger than thej0 ) 1,2,3 ones.

The resonances appear more clearly in Figure 3, where the
second derivatives of the cross sections forj0 ) 0,...,4 are
displayed as a function of the total energy. As we already
mentioned, the resonances are clearly visible forj0 ) 0 but
almost disappear forj0 ) 4. A detailed analysis of the cross
sectionsσj0m0V0 yields the resonances at approximately the same
values of the total energy for the same values of them0 quantum
number. For example, the cross sectionsσj0m0V0 for m0 ) 0 and
j0 ) 1,...,4 are shown in the insert in Figure 3. Similarly we
can find that the second resonance in cross sectionsσj0m0V0 for
j0 g 1 in Figure 3 atEtot = 0.75 eV is associated with them0

) 1 cross sections. We should mention that no such resonances

have been detected when applying the CS approximation, neither
for the total cross sectionsσj0V0 nor for the cross sectionsσj0m0V0.
Resonances do occur for particular (j0m0V0J) channels, but they
are shifted with increasingJ quantum number and are washed
out by the summation overJ. The quenching of all resonance
structures in the total reaction cross section is discussed in detail
in ref 56. However, as shown in Figures 2 and 3, a small
signature of the resonance remaines visible in the H+ D2 total
reaction cross section. The behavior of the exact partial cross
sections,σj0m0V0J, shows that only the resonances corresponding
to small J contribute to the resonance structure of the cross
sectionsσj0m0V0. With further increasingJ the resonances become
less visible, are shifted, and are washed out by the summation.
The two first points can be observed from Figure 4, where the
reaction probabilitiesPj0m0V0

J (E) for (j0,m0,V0) ) (0,0,0) andJ )
0,...,30 are depicted.

To understand the nature of the transition state resonances
appearing in our cross sections we analyzed the resonances of
the single partial cross section corresponding to the channel
defined by (j0,m0,J) ) (0,0,0) quantum numbers. This cross
section is depicted in Figure 5 (solid line). In the same figure
filled circles represent the resonance positions and the “error
bars” give the corresponding widths of the ground state and
the first and second excited states of the bending vibrational
motion of the HD2 triatom (J ) 0). The triangles correspond to
the first and second excited states of the symmetric stretch
motion of the triatom. The resonances have been calculated
using thefilter diagonalizationscheme,57-59 in conjunction with
the MCTDH method for the propagation of the initial wave
function of the relevant states. Similar calculations of resonances
of the H + H2 system have been discussed in refs 60,61. One
may infer from Figure 5 that the resonances in the cross section
curve presumably correspond to the bending motion rather than
to the other modes. For a fixed totalJ quantum number the
resonances appear (to a very good approximation) at the same
values of the total energy when considering cross sections for
different j0 but identicalm0. However, the resonance positions
are shifted with respect to each other for differentm0. The
resonance structures are weakened forj0 > 0. This can be

TABLE 1: Comparison of MCTDH and QM Exact Integral
Cross Sections for the H+ D2(W0 ) 0) f HD + D Reaction
Using the LSTH Potential Energy Surface

Etr (eV) j0 MCTDHa other

0.52515 2 0.256 0.260d

0.53100 0 0.250 0.254b

0.54000 0 0.264 0.261c

0.54000 1 0.273 0.271c, 0.274d

0.54000 2 0.285 0.282c

0.54736 0 0.277 0.277d

0.55000 0 0.282 0.284d, 0.280e

1.30000 0 1.041 1.060e

a Present work.b Ref 54.c Ref 26.d Ref 55.e Ref 10.

Figure 3. Second derivatives of the initial-state-selected cross sections,
-d2σj0V0/dE2, for the H + D2(V0 ) 0) reaction as a function of total
energy (j0 ) 0: solid line,j0 ) 1: dotted line,j0 ) 2: dashed line,j0 )
3: long-dashed line,j0 ) 4: dot-dashed line). The insert displays second
derivatives ofσj0m0V0, with m0 ) 0. The total energy is measured with
respect to the bottom of the D2-potential energy curve. The internal
energiesEj0V0 are, e.g.,E00 ) 0.1915 eV andE40 ) 0.2651 eV.

Figure 4. H + D2 reaction probabilities,Pj0m0V0

J , for the j0 ) 0, m0 )
0, V0 ) 0, andJ ) 0,...,30 as a function of total energy. The uppermost
curve corresponds toJ ) 0, and the lower curves toJ ) 1,2,...,30,
respectively.

2608 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Sukiasyan and Meyer



observed from Figure 5, where the partial cross sections for
the channels defined bym0 ) 0, J ) 0 andj0 ) 0,1,2 are shown.

3.2. D+ H2(W0 ) 0) f DH + H Reaction.The upper curve
(scale on the left) of Figure 1 displays the rotationally averaged
(T ) 300 K) reaction cross sections for the D+ H2(V0 ) 0) f
DH + H reaction as a function of translational energy. Due to
the higher zero-point energy of the H2 vibration, the threshold
is lowered as compared to the H+ D2 system.

Figure 6 shows the initial-state-selected integral cross sections
for V0 ) 0 andj0 ) 0,...,4 from the threshold up toEtrans ) 1.3
eV. One may infer from Figure 6 a mixed effect of the rotational
excitations on the reactivity. For translational energies between
0.35 and 0.77 eV an initial H2 rotation decreases the reactivity
but for other energies it increases the reactivity. This result was
also found by QCT calculations reported by Aoiz et al.,20 where

the quasiclassical cross sections forj ) 0,3,5,7 were presented
(see also refs 21,23). The crossing of thej ) 0 andj ) 3 cross
section curves at approximately 0.8 eV collision energy, which
was found by Aoiz et al., is also in a good agreement with our
results. However the QCT calculations did not show the
behavior of the effect of the rotation on the reactivity at the
energies near the threshold.

The traces of transition state resonances which we found in
the H + D2 reaction are seen here again, but even less clearly
pronounced. Only the first resonance of theσj0)0,V0)0 cross
section can be clearly recognized. The second derivatives of
the rotational cross sections as a function of the total energy
are shown in Figure 7. Comparing Figure 7 with Figure 3 one
again notes that the resonance structure of the D+ H2 system
is much weaker than for the H+ D2 system.

4. Summary

The influence of the initial rotation on reactivity for the H+
D2 and D + H2 systems has been investigated. The QM
cumulative initial-state-selected cross sections for the initial
quantum numbersV0 ) 0 andj0 ) 0,...,4 have been calculated
employing the MCTDH wave packet propagation scheme. The
calculations for the H+ D2 system showed that the initial
rotation enhances the reactivity of the system, which is in
agreement with previous QCT22,23and QM26 calculations. The
comparison of the present results with previous CS results,
where the opposite effect has been detected, leads to the
conclusion that theK-coupling, which is neglected in CS
approximation, is responsible for the effect. In the case of the
D + H2 system, a negative effect of the initial rotation on the
reactivity has been found for translational energies between 0.35
and 0.77 eV. This is also in agreement with the previous
QCT19-23 calculations. Furthermore, an excellent agreement of
MCTDH and QM exact calculations is demonstrated.

The signature of transition state resonances has been found
in the initial-state-selected total reaction cross sections. The
resonances of the H+ D2 system are pronounced in thej0 ) 0

Figure 5. Partial cross sectionσj0m0V0J for m0 ) 0, V0 ) 0, J ) 0, and
j0 ) 0 (solid line), j0 ) 1 (dotted line), andj0 ) 2 (dashed line) as a
function of total energy. Also shown are the transition state resonance
energies for bending vibrational motion (circles) and symmetric stretch
motion (triangles) forJ ) 0. The corresponding resonance widths are
indicated by “error bars”.

Figure 6. Initial-state-selected cross sections,σj0V0, for the D+ H2(V0

) 0) reaction as a function of translational energy (j0 ) 0: solid line,
j0 ) 1: dotted line,j0 ) 2: dashed line,j0 ) 3: long-dashed line,j0 ) 4:
dot-dashed line).

Figure 7. Second derivatives of the initial-state-selected cross sections,
-d2σj0V0/dE2 for the D + H2(V0 ) 0) reaction as a function of total
energy (j0 ) 0: solid line,j0 ) 1: dotted line,j0 ) 2: dashed line,j0 )
3: long-dashed line,j0 ) 4: dot-dashed line). The total energy is
measured with respect to the bottom of the H2 potential energy curve.
The internal energiesEj0V0 are, e.g.,E00 ) 0.27 eV andE40 ) 0.415
eV.
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cross section but are quenched for largerj0 and disappear forj0
) 4. For the D+ H2 system the presence of these resonances
is even less clearly pronounced.

In contrast to the CS results, the resonance structure is not
completely washed out by the summation over the totalJ. Only
the partial cross sections corresponding to the smallJ’s
contribute to the final resonance structure. We find that the cross
sections for the same initial magnetic quantum numberm0,
σj0m0V0, but differentj0, show transition state resonance maxima
at identical total energies. The location of the maxima differ
for different m0, in particular for odd and evenm0. We show
that these resonances correspond to the bending motion of the
transition state, rather than to the other modes. Despite its very
weak appearance, this is, to our knowledge, the first transition
state resonance reported for a calculation on the total cross
section of the H+ H2 system or its isotopic variants.

The reaction cross sections thermally averaged over rotational
states atT ) 300 K have been computed for both reactive
systems under study. For the H+ D2 reactive system at high
translational energies, a significant difference has been found
between the thermally averaged cross sections calculated using
the CS approximation and the present calculation using the exact
kinetic energy.
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Appendix

Extended Legendre DVR. In the MCTDH program the
operation of Hamiltonian terms on the spf’s is accomplished
by standard DVR's. For the two-dimensional spf’sæ(3)(θ,K),
however, a special two-dimensional DVR is needed as there
are no (separable) product DVR’s that correctly represent the
kinetic energy operatorĵ2 (see eq 5). This is because of the
singular termK2/sin2 θ. In the following we shall derive the
two-dimensional extended Legendre DVR, called “K-Leg-DVR”
for brevity. Here we largely follow the work of Corey, Tromp,
and Lemoine.62,63

We start by defining theL2-normalized associated Legendre
functions

which will serve as a family of basis sets underlying the K-Leg-
DVR.

The effect of the operationsĵ2 andĵ( on these basis functions
is well-known:

Corey, Tromp and Lemoine realized that using the grid points
θR and the weightswR of the standard Gauss-Legendre quadra-
ture may yield exact results even for quadratures overassociated

Legendre functions; i.e.,

if j + j′ + k e 2N - 1. Sincej g |K| there are fewer exact
quadratures as for Legendre polynomials (i.e.,K ) 0), but as
long asK < N/2, say, the above relation is very useful. Note
that the grid pointsθR and the weightswR are most conveniently
generated by diagonalizing cosθ in the basis set{P̃j

0}j)0
jmax,

wherejmax ) N - 1.27,64

Next, a set of transformation matrixes relating basis functions
and grid points is introduced:

The rows ofUjR
K are orthonormal as long asj e jmax. This

follows immediately from eq 29. However, if one restrictsj to
j e jmax, there are onlyjmax + 1 - |K| rows butN ) jmax + 1
columns. To makeUK square and unitary we letj run from |K|
to jmax + |K| and successively Schmidt-orthonormalize the rows
jmax + 1,...,jmax + |K| to the lower ones. This ad hoc procedure
is justified as long as the basis set is large enough such that the
functions for P̃j

K have negligible contributions to the wave
function for j > jmax.

After having established the family of DVR transformations
UK one now can define the DVR representation of the operators
ĵ2 and ĵ(:

The effect of the operatorsĵ2 and ĵ( on æ(3) is finally given
by

The matrix operations above have to be performed for eachK
out of theK-grid. For diatomic target molecules one may use
symmetry to reduce the number ofθ-grid points by a factor of
2. This can be accomplished by using only odd or evenj’s when
expandingæ(3) in the set{P̃j

K}.27
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(ĵ(æ(3))(θR,K ( 1) ) ∑
â)1

N

j((R,â,K)æ(3)(θâ,K) (35)

2610 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Sukiasyan and Meyer



(10) D’Mello, M.; Manolopoulos, D. E.; Wyatt, R. E.J. Chem. Phys.
1991, 94, 5985.

(11) Aoiz, F. J.; Ban˜ares, L.; D’Mello, M. J.; Herrero, V. J.; Ra´banos,
V. S.; Schnieder, L.; Wyatt, R. E.J. Chem. Phys.1994, 101, 5781.

(12) Zhao, M.; Truhlar, D. G.; Blais, N. C.; Schwenke, D. W.; Kouri,
D. J. J. Phys. Chem.1990, 94, 6696.

(13) Charutz, D. M.; Last, I.; Baer, M.J. Chem. Phys.1997, 106, 7654.
(14) Neuhauser, D.; Baer, M.; Judson, R. S.; Kouri, D. J.J. Chem. Phys.

1990, 93, 312.
(15) Gray, S.; Balint-Kurti, G.J. Chem. Phys.1998, 108, 950.
(16) Miller, W. H. Annu. ReV. Phys. Chem.1990, 41, 245.
(17) Barg, G.-D.; Mayne, H.; Toennies, J. P.J. Chem. Phys.1981, 74,

1017.
(18) Boonenberg, C.; Mayne, H.Chem. Phys. Lett.1984, 67, 108.
(19) Aoiz, F. J.; Herrero, V. J.; Ra´banos, V. S.J. Chem. Phys.1991,

94, 7991.
(20) Aoiz, F. J.; Ban˜ares, L.; D’ez-Rojo, T.; Herrero, V. J.; Ra´banos,

V. S. J. Phys. Chem.1996, 100, 4071.
(21) Sathyamurthy, N.; Toennies, J.Chem. Phys. Lett.1988, 143, 323.
(22) Aoiz, F. J.; Ban˜ares, L.; Herrero, V. J.; Ra´banos, V. S.; Tanarro, I.

J. Phys. Chem. A1997, 101, 6165.
(23) Hochman-Kowal, S.; Persky, A.Chem. Phys.1997, 222, 29.
(24) Auerbach, S. M.; Miller, W. H.J. Chem. Phys.1994, 100, 1103.
(25) Zhao, M.; Truhlar, D.; Schwenke, D.; Kouri, D.J. Phys. Chem.

1990, 94, 7074.
(26) Aoiz, F. J.; Ban˜ares, L.; Castillo, J.; Herrero, V.J. Chem. Phys.

1999, 111, 9891.
(27) Beck, M. H.; Ja¨ckle, A.; Worth, G. A.; Meyer, H.-D.Phys. Rep.

2000, 324, 1-105.
(28) Meyer, H.-D.; Manthe, U.; Cederbaum, L. S.Chem. Phys. Lett.

1990, 165, 73.
(29) Manthe, U.; Meyer, H.-D.; Cederbaum, L. S.J. Chem. Phys.1992,

97, 3199.
(30) Raab, A.; Worth, G.; Meyer, H.-D.; Cederbaum, L. S.J. Chem.

Phys.1999, 110, 936.
(31) Worth, G. A.; Meyer, H.-D.; Cederbaum, L. S.J. Chem. Phys.1998,

109, 3518.
(32) Huarte-Larran˜aga, F.; Manthe, U.J. Chem. Phys.2000, 113, 5115.
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