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Cumulative initial-state-selected reaction cross sections of the®4 and D+ H, systems are analyzed for
collision energies up to 1.3 eV. Initial states of the diatom with rotational quantum nuialzer8—4 and
vibrational quantum numbeg = O are considered. The LitSiegbaha-Truhlar—Horowitz (LSTH) potential

energy surface is taken as interaction potential. The geometric phase is ignored but no further (nonnumerical)
approximations are made. The cross sections are computed by propagating wave packets employing the
multiconfiguration time-dependent Hartree scheme. The reactive flux, which determines the integral cross
section, is evaluated through the interaction of the wave packet with a complex absorbing potential. The
initial-state-selected integral cross sectiogg(E), in particular those foj, = 0, show weak oscillations,

which we attribute to transition state resonances associated with excitations of the bending motion. Some of
the present results are discussed in comparison with results obtained by using the coupled states approximation.

1. Introduction but here the same threshold for glk is obtained. In the QCT
calculations for the H- D, system?23an increase of reactivity

The H + H, system and its isotopic variants are certainly ~< % ; ) . X
with increasing rotational excitation has been observed in the

prototype systems for studying quantum molecular reaction :
dynamics. As quantum reactive scattering is a difficult problem POSt threshold region.

as such, the smallest system plays a distinguished role. Over In the present paper we will solve the-HD; and D+ H;
more than 30 years, this system has been extensively studiedeactive scattering problem by wave packet propagation and
quantum mechanically, and many new methods have beenadopt the multi-configuration time-dependent Hartree (MCTDH)
developed for or tested on it. Already in 1969 McCullough and algorithm to perform the propagation. MCTBH?? is a
Wyatt investigated the quantal flux in the vicinity of the saddle propagation method that can be very efficient, in particular for
point region for collinear H+- H; scattering-2 This study is large system&231 The H+ D, and D+ H, systems studied
also a very early example of using the time-dependent picture. here are too small to fully exploit the high efficiency of
Full 3D calculations to determine total or differential cross MCTDH, but when turning to larger reactive systems we expect
sections appeared about 10 years later. A large variety ofthe use of MCTDH to be of considerable advantage. A recent

methods have been used for this purpose, e.g., close couplinga|culation on reaction rates of H CH,32 further supports this
expansion in hyperspheric coordinatescomplex Kohf~° and expectation.

log-derivative KohA%1variational calculations (the latter being
equivalent to an R-matrix approach), the generalized Newton
variational principle}? the Toeplitz approack, and wave packet

ropagation method<:1>For further references see the review A NI o
gf VI?/ QI’-I Miller 16 sudden (CS) approximation to simplify the Hamiltonian (see

The effect of the initial rotation on the reactivity for the-H Section 2.1). Using the CS approximation, it was found that
H, system and its isotopic variants has been investigated both' collision energies between 0.4 and 0.95 eV, the initial
quasiclassicall/~23 and quantum mechanically (QNf2426 rotatlon_ of _the D-diatom slightly hinders re_actlon. Using the
The quasiclassical trajectory (QCT) calculations for therH _exact kinetic energy operator, however, A_0|Z et al. showed that
H,1718 and D+ H,1923 systems showed, at low translational internal rotation slightly enhances reactieat least for the
energies, a decrease of the reaction cross sections with increasingarticular energy (0.54 eV) they prob&iThe approximate
rotational excitation for smally's. (Initial quantum numbers  treatment of the kinetic energy by the CS approximation hence
are always specified by the index 0.) For larggs the opposite  reverses the ordering of thg, cross sections.
effect is observed. In the QCT calculations a decrease of the In the present paper we investigate the initial-state-selected
cross sections with increasinjgs starts in the vicinity of the reaction cross sections of the H D, and D + H, systems.
threshold, which is shifted upward with increasiggThe QM The diatom is assumed to be initially in its vibrational ground
calculations for the D+ Hy(vo = 1, jo = 0—3) systerd* also state,uo = 0, and in a specific rotational stajg,= 0,1,2,3, or
indicate the negative influence of initial rotation on reactivity, 4. The range of collision energies investigated is-A.3 eV.

T - P - . The geometric phase was ignored. It has been shown that the

Part of the special issue “William H. Miller Festschrift”.

* Author to whom correspondence should be addressed. E-mail: dieter@ 9€0metric phase effect cancels out when summing over total
tc.pci.uni-heidelberg.de. Js34

The present work was partially motivated by the critique by
Aoiz et al?8 of our previous study of the H- D, system?3
There we used theoupled stategalso known asentrifugal
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We confirm the results of Aoiz et al., but more importantly, In the present work we will treat the scattering problem
we find that a weak resonance structure appears iojtheE) beyond the CS approximation, including the full Hamiltonian
cross section. Thus, in contrast to the CS results, the resonantegs 3, 4), but we will occasionally compare with CS results.
structure is not completely washed out by the summation over 2.2. MCTDH. The scattering process is studied within a time-
the totalJ's. Despite its very weak appearance, this is, to our dependent framework and the wave packet propagation is
knowledge, the first transition state resonance reported for aperformed by using the multi-configuration time-dependent
calculation on the total cross section of thetHH, system or Hartree (MCTDH) approach. As the MCTDH method has
its isotopic variants. recently been thoroughly reviewé€the technique is discussed

here only very briefly.
2. Theory The ansatz for the MCTDH wave function éfdegrees of

2.1. Hamiltonian. The triatomic scattering system is de- (reedom reads

scribed by body-fixed (BF) Jacobian coordinakes 6 and by
three Euler angles relating the BF to the space-fixed system.
Here, R denotes the distance between the projectile and the
center of mass of the diatom,is the internuclear distance of
the diatom, and the angle betweeR andr.

As the total angular momentum operatbcommutes with
the Hamiltonian, one may consider the individdalomponents,
P, of the total wave function. One finds thé@t’ depends only
on the third Euler anglep, which is the azimuthal angle
specifying the orientation of the BF-system aroufidAs only
the kinetic energy depends @n it is advantageous to replace
¢ by the momentum variabl, which is the projection of the
total angular momentund onto R (i.e., onto the BFz-axis).
Hence we expand the wave function

W(Qy,...Qut) = ) fp“(QK,t) 7)
-80= 3380

where theQ; denote thd nuclear coordinates, th, j are the
time—dependent expansion coefficients, and ¢W@(th) are
n, expansion functions for each degree of freedorhnown as
single-particle functiongspfs). Giving the ansatz eq 7, equa-
tions of motion for the expansion coefficients and spf's are
derived from the DiraeFrenkel variational principle, as
discussed in refs 2729. Here we only note that the MCTDH
equations of motion are nonlinear and comparatively compli-
cated. However, there are much fewer equations to be solved
as compared to the standard method (i.e., expanding the wave
II,J(Rr 0.¢) = (27[)—1/2 lIIJK(R r 49)e”<¢ @ function in atime-indepeqdent product bgsis set). This is because
n Z " the number of spfsp,, is in general considerably smaller than

the number,N,, of primitive basis functions or grid points
needed to represent the spf).

The MCTDH algorithm can be very efficient when treating

and write the time-dependent S¢Hiager equation &837

gk = HiKlpJK + |-|JK KH\pJ'K*l + Hf< K_llpJ'K—l 2) large systems. This is demonstrated by recent calculations of
’ ’ the absorption spectrum of pyrazifté'where a 24-dimensional
where wave packet was propagated on two coupled potential energy
surfaces.

19 19 n i°
2updR? 2upr®  2u,r?

N
Hkk =

1
2ueR

[JQ+ 1) — 2K*+ 77 + V(Rr,0) (3)

Returning to the MCTDH ansatz (eq 7) we note that the spf's
need not be one-dimensional but may depend on several
coordinateg’-3141n the present investigation, the two degrees
of freedom@ and K are combined and are represented by a
single set of spf’s. For the three-particle scattering problem under

discussion the MCTDH wave function thus reads

1 "
HJKﬂ,K=——2uRR2~/J(J+1)—K(Kil)ji @ wKRre) = Z K ORGP0 (®)

2= .1 d sin 9 _ K? (5) where the variabl& takes, of course, only integer values.
sinfad 90  sirt g For an efficient implementation of the MCTDH algorithm,
it is necessary for the system Hamiltonian to be given in product
and form, i.e., the Hamiltonian must be represented as a linear
combination of products of one-dimensional oper&tets

=50 _
j.=7F %0 K cotf (6) .
H=Yc[1n* 9)
The symbolsir andu, denote the usual reduced massesnd = ok=

is the interaction potential. The interpretation of eq 2 is clear.
The motion of the BF-system couples the varidtstates This treatment allows us to write the Hamiltonian matrix
through the coupling termIsIJKKil (Coriolis coupling). When elements and mean fields, which determine the time evolution

dropping these terms, one arrives at the well-knaenpled according to the MCTDH equations of motion, as sums of
statesor centrifugal sudder{CS) approximatiod®4° Within products of one-dimensional integrals.
the CS approximation the quantum numBeis conserved and The kinetic energy operator which we use is, as is usually

thus treated as a parameter, reducing the four-dimensionalthe case, of the required product form. However, the interaction

problem to a three-dimensional one. potential, for which we adopted the LiBSiegbahna-Truhlar—
Note that in the BF-systed = j, = K holds (becausk = 0 Horowitz (LSTH) potential energy surface oflih its lowest

by construction). The initiaK is thus the initial magnetic  electronic staté?=44 does not possess a product form. We thus

rotational quantum number of the diatom. generated an accurate fit sty using the algorithm described
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in refs 27,45,46. The potential then assumes the form of ref 33 (see also refs 27,4 . denotes the total energy and
Ej.., the energy of the diatom in itgo¢o) ro-vibrational state.
oo @ @ 2.4. Analysis of Reactive Flux; Cross Section3.he initial-
V(Rr,0) = ZZDij(R)Ui (r)v;(0) (10) state-selected reaction probabilitié¥,, , (E), are determined
1=1)=

by analyzing the reactive flux into the arrangement channel of
the products. This was achieved by employing a recently
developed combined flux operator/complex absorbing potential
approach’*0In reactive scattering complex absorbing potentials
(CAP’s) have been used for the first time by Neuhauser and
Baer>! and Seideman and Millgtrhave related the cumulative
reaction probability to a trace over the CAP times a Green’s
3 o function.

Aj1j2j3(t =0)= 61'11(31'225133 (11) In the present work the CAP+iW, is defined as a sum of

two one-dimensional potentials

whereD,v® andv® are given numerically, i.e., they are defined
only on the grid points.

2.3. Initial State. The initial state is taken as a single Hartree
product of a Gaussian wave packetRna vibrational eigen-
function inr, and a rotational eigenfunction ifx i.e.,

PP(Rt=0)=y,(R) =

R—R\] _. W(Rr) = Wg(R) + W,(r) 19)
(V2rd) M exg —|—=—| |e P® R (12) _ _ _
2d, with the generic form of the arrangement CAPs given by
. . . . _ — _ s
¢(rt=0)= ¢, (r) = vibrational eigenfunction ~ (13) Wo(Q) = 7gh(Q — Q)(Q — Q)™ (20)
whereh denotes the Heaviside step functi@d is the point at
2jp+ L(jp— my! which the CAP startg)q a is strength parameter, afig denotes
3 _ _ 0 0 Q ’
e(OKt=0)= \/Tm Pﬂb(cose)éK m the order of the monomial CAP.

The initial-state-selected reaction probabilities are then related
(14) to the interaction of the time evolved wave pacKé\t) with
the product arrangement channel CAWR;. The working

wherejo,mo,vp are the initial ro-vibrational quantum numbers equation read$

of the free diatom.P," denotes the associated Legendre

function, ando is the kronecker symbol. The parametey p? (E) = 2

should be chosen such that the initial wave function is placed JoMozo nlA(E)lZ

outside the range of the potential. However, the initial wave

function may be put much closer to the scattering center if a where Re denotes the “real part of”, and where

correction is made on the wave function and its energy

distributionAE (see below) such as to account for the influence g ()= f T Wt + )@t (22)

of the tail of the potential. We have used here the so-called Yoo 0 '

ggiigatic correctiorscheme which is discussed in detail inrefs 1,4 energy distributiol\(E) (see eq 15) of the initial wave
The momentunpy and the widthdr determine the energy

distributionA(E) of the initial wave packet. We have previously

determined this energy distribution by evaluating the distorted

wave ¥e(R), which will be defined below, by the Wentzel

Re[’g . (edr  (21)

packet determines the energy range, for which all cumulative
reaction probabilities can be computed by a single propagation.

Having computed the reaction probabilitié%nbz,o(E), the
reaction cross sections can readily be determined

Kramers-Brillouin (WKB) approximation. We now prefer to a2)4+1
generate this function numerically using the Numerov method O mpo(B) = mpio‘molvo(a (23)
since this is very easily done. jovp ©
The energy distribution of the initial state is defined as S
A(E) = GelxoU (15) T E) = D Ojomyi(E) (24)
J=my
where¥e(R) is the Jost-solutiol§ of the vibrational adiabatic J
Hamiltonian, i.e., °
%ol =2 Oiomsl©) @5)
— 10

1 & d -
— 55+ Vi (R - E)x (R=0  (16)
( Zuggre oM : wherek,, is given by eq 18.

The rotationally temperature-averaged reaction cross sections

subject to the boundary condition shown in Section 3 are computed similarly as discussed in refs
33,53.
jZE(R)E zﬁ/"é_exp(_ikjoyopz) (17) 25 Numericgl Details.T_he nL_lmericaI parameters for the_
%o reactive scattering calculation discussed here are chosen in a

fashion similar to that of our previous calculation on thetH
D, system?3 where the CS approximation had been adopted.

Here, only some additional parameters are to be mentioned. The
Koo = V2UrE—E,) (18) number of spf's for the combined rotational degrees of freedom
(6,K), n3, depends on the totdlquantum number. To achieve
is defined by eq 17 convergence we varied the number of spf's between) 22 Q)

with

ad

The vibrationally adiabatic potenti&fgnbyo
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Figure 1. Thermally averaged reaction cross sections. The solid lines
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represent present MCTDH exact calculations, where the lower curve Figure 2. Initial-state-selected cross sectiong,,, for the H+ D2(vo

(scale on the right) is for H- D(vo = 0) and the upper (scale on the
left) for the D + Ha(vo = 0) reaction. The dashed line represents the
MCTDH CS calculation for the H- Dx(vo = 0) reaction taken from
ref 33. All cross sections are rotationally averaged oveiTtke300 K
Boltzmann distribution.

and 32 § = 12—14). ForJ > 14 it was decreased with
increasing], arriving at 21 spf's forJ = 30. The length of the
K grid depends od as well. The whole allowe& range, i.e.,
[—J,J] is necessary for smalls (up toJ = 10). For the values
J > 10 a reduced range-{L0,10] was sufficient. The number
of grid points for the angulaf degree of freedom is reduced
from 3133to 23. The values ofig is 0.001 andjqg = 3 forQ =
Rorr. The number of spf's for thR andr degrees of freedom,
ng andn,, are 18 and 16, respectively.

The initial momentunpy, and widthdg of the Gaussian wave
packetyo (eq 12) were chosen in accordance with the desired
initial energy distributioA(E) (eq 15). For energies up to 1.3
eV the valuegpy = —7.0(—7.9) anddr = 0.24(0.21) for the H
+ Dy (D + Hy) have been chosen. The number of natural
potentials wasn, = 12 andmy = 9 for the product representa-
tion of the LSTH potential energy surface (see eq 10).

Each single propagation is specified by a set of initial
quantum numbergd,mp,J). Total angular momentum values up

= 0) reaction as a function of translational energy= 0: solid line,
jo = 1: dotted line jo = 2: dashed linejo = 3: long-dashed lingp =
4: dot-dashed line). The insert displays thg, near the first transition
state resonance.

ones. Considerable differences occur at higher energies. The
CS cross section is larger than the exact one, and the difference
increases with increasing collision energy. A detailed analysis
of the partial cross sectionsjm..i(E), given by eq 23, shows
that the difference in the cross sections for the CS vs exact
calculations is due to the partial cross sections corresponding
to high values of thd quantum number. The higher tiealue

is, the more significant the role of th€-coupling appears to

be, and therefore the more pronounced are the differences
between the two calculations.

Figure 2 shows the initial-state-selected integral cross sections,
Ojowo(E), for theH + Dy(vo,jo) — D + HD reaction foryg = 0
andjo = 0,...,4 as a function of translational energy. One may
infer from the figure that the rotational excitations slightly
increase the reaction cross section. This result is in agreement
with QCT and QM calculation®2326The opposite effect has
been found in our previous CS calculatiéhéor the energy
range from post-threshold up to ca. 0.95 eV. This indicates that
the CS approximation becomes less reliable the more detailed

to Jmax = 30 were necessary to obtain converged results in the q information is.
energy range under investigation (up to 1.3 eV). Hence 445 . . . . .
independent wave packet propagations were performed for each Let us consider this problem in detail. Using the CS

system. The computational cost for a single calculation varies approximation the magnetic quantum numlb’er_emgms un-
between 30 mind = 0) and 3 h § = 12—14) CPU-time on a changed during the reaction. Using the exact kinetic ené€gy,

Dec-alpha 21264 AXP-500 MHz processor. chang_es and may be cha_\racterized by its average Valite
We believe that the cross sections computed are correct toand widthAK(t) as a function of the propagation time. For the

. / A _ N .
1% or at most 2% for collision energies below 1.2 eV. At higher calculations with an initiaKo = my > 0 value the functions

. . . ._Ko(t) show a general tendency to decrease during the reaction
energies the accuracy gradually deteriorates because the initial. . L .
S ime, where the rate of decrease increases with increasing total
energy distributiomA(E) becomes small.

J quantum number. As the transition state is linear for thé H
. . D, system, the reactivity foK = 0 is larger than foK = 0.

3. Results and Discussion One thus may conclude that the CS approximation will
3.1. H+ Dy(vo = 0) — HD + D Reaction.In Figure 1 the overestimate the reactivity of they = 0 channels, but
rotationally averagedT(= 300 K) reaction cross sections are underestimate the reactivity of ttney > 0 channels. Because

depicted as a function of the collision energy. The two lower the role of themy > 0 channels for the givej increases with
curves, corresponding to the scale of the right of the figure, growingjo, the overestimation of the CS approximation in the
show the results for the H Da(vp = 0) reaction obtained by  total gj,, cross section for smajl's gradually turns into a
the present (solid line) and the former ¥Ydotted line) underestimation for largg’s. In the case of the present reaction
MCTDH calculations. For low translational energies (up to 0.7 it leads to the observed re-ordering of g, cross sections
eV) the CS results are in a quite good agreement with the exactwith jo. The fact that the CS approximation cannot account for
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TABLE 1: Comparison of MCTDH and QM Exact Integral 0.6
Cross Sections for the H+ Dy(zo = 0) — HD + D Reaction
Using the LSTH Potential Energy Surface
Ev (eV) jo MCTDH?2 other 0.5
0.52515 2 0.256 0.260
0.53100 0 0.250 0.254
0.54000 0 0.264 0.261 0.4
0.54000 1 0.273 0.2710.274
0.54000 2 0.285 0.282 -
0.54736 0 0.277 0.277 T03
0.55000 0 0.282 0.2840.280¢ X
1.30000 0 1.041 1.060 §
aPresent work? Ref 54.¢ Ref 26.9 Ref 55.¢ Ref 10. A 02

0.1

]
1.5 1.

0 2
03 0.5 0.7 0.9 11 1.3 7

Elotal [eV]

Figure 4. H + D; reaction probabilitiesl?fonbvo, for thejo=0,my =

0, vo= 10, andJ = 0,...,30 as a function of total energy. The uppermost
curve corresponds td = 0, and the lower curves té = 1,2,...,30,
respectively.

_d’o/dE’

have been detected when applying the CS approximation, neither
for the total cross sections,,, nor for the cross sections,my.
Resonances do occur for particulangued) channels, but they
are shifted with increasing quantum number and are washed
out by the summation ovel. The quenching of all resonance
, L structures in the total reaction cross section is discussed in detail
06 0.7 0.8 0.9 L0 L1 12 in ref 56. However, as shown in Figures 2 and 3, a small
B [V signature of the resonance remaines visible in the H; total
Figure 3. Second derivatives of the initial-state-selected cross sections, reaction cross section. The behavior of the exact partial cross
—dPoj,,/dE?, for the H + Dy(vo = 0) reaction as a function of total  sectionsgjm,,;, Shows that only the resonances corresponding
energy jo = 0: solid line,jo = 1: dotted linejo = 2: dashed lingjo = t Jomoeod:
3: long-dashed lingo = 4: dot-dashed line). The insert displays second 0 smaIIJ contrlbute to th_e resohance structure of the cross
derivatives 0fojyny, With my = 0. The total energy is measured with SeCt'Olnf”ionbUO' Wlth.further increasind the resonances becomg
respect to the bottom of the fpotential energy curve. The internal €SS visible, are shifted, and are washed out by the summation.
energieskj,, are, e.g.Eo = 0.1915 eV andEs = 0.2651 eV. The two first points can be observed from Figure 4, where the
o ) o reaction probabilitie@fmoy (E) for (jo,mo,v0) = (0,0,0) and] =
the initial rotational effect on the reactivity indicates once more 0....,30 are depicted. oo
the important role of thé&-coupling.
Table 1 compares the present MCTDH results with exact QM
calculations of initial-state-selected integral cross sections for
the H 4+ Dy(vp = 0) — HD + D reaction taken from the

To understand the nature of the transition state resonances
appearing in our cross sections we analyzed the resonances of
the single partial cross section corresponding to the channel

literaturel9.26:5455The comparison gives an excellent agreement defined by fomo,J) = (0,0,0) quantum numbers. This cross
of the MCTDH results with the literature values section is depicted in Figure 5 (solid line). In the same figure
Besides the initial rotational effect, the presénce of weak filled CiFC'eS represent the_resonance positions and the “error
transition state resonances can be observed in Figure 2. Th®'S’ give the corresponding widths of the ground state and
resonance structure is most pronounced forighe 0 case and the first and second excited states of the bending vibrational
disappears with increasirig The insert in Figure 2 shows the ~Motion of the HD triatom ¢ = 0). The triangles correspond to
cross sections near the first transition state resonancgoEne  the first and second excited states of the symmetric stretch
0 cross section is here larger than jhe= 1,2,3 ones. motion of the triatom. The resonances have been calculated
The resonances appear more clearly in Figure 3, where theusing théfilter diagonalizationschemé/~>?in conjunction with

second derivatives of the cross sections jior= 0,...,4 are ~ the MCTDH method for the propagation of the initial wave
disp|ayed as a function of the total energy. As we a|ready function of the relevant states. Similar calculations of resonances

mentioned, the resonances are clearly visiblejfor= 0 but of the H+ H, system have been discussed in refs 60,61. One
almost disappear fap = 4. A detailed analysis of the cross may infer from Figure 5 that the resonances in the cross section
sectionwjgm,, Yields the resonances at approximately the same curve presumably correspongl to the bending motion rather than
values of the total energy for the same values ofthguantum to the other modes. For a fixed totdlquantum number the

number. For example, the cross sectiops,,, for mp = 0 and resonances appear (to a very good approximation) at the same
jo = 1,...,4 are shown in the insert in Figure 3. Similarly we values of the total energy when considering cross sections for
can find that the second resonance in cross sectigis, for differentjo but identicalm,. However, the resonance positions

jo = 1in Figure 3 atEy: = 0.75 eV is associated with they are shifted with respect to each other for differemf The
= 1 cross sections. We should mention that no such resonancesesonance structures are weakenedjfor 0. This can be
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Figure 5. Partial cross sectiotjyny, for m =0, o = 0,J =0, and . o o .

jo = 0 (solid line),jo = 1 (dotted line), ando = 2 (dashed line) as a Figure 7. Second derivatives of the initial-state-selected cross sections,

function of total energy. Also shown are the transition state resonance ~®0j,/dE? for the D + Hy(vo = 0) reaction as a function of total

energies for bending vibrational motion (circles) and symmetric stretch €nergy fo = 0: solid line,jo = 1: dotted linejo = 2: dashed linejo =

motion (triangles) for) = 0. The corresponding resonance widths are 3: long-dashed linejo = 4: dot-dashed line). The total energy is

indicated by “error bars”. measured with respect to the bottom of thepdtential energy curve.
The internal energieg,, are, e.g.Fq = 0.27 eV andEs = 0.415

T ev.
20 | E

the quasiclassical cross sectionsjfer 0,3,5,7 were presented
(see also refs 21,23). The crossing of e 0 andj = 3 cross
section curves at approximately 0.8 eV collision energy, which
was found by Aoiz et al., is also in a good agreement with our
results. However the QCT calculations did not show the
behavior of the effect of the rotation on the reactivity at the
energies near the threshold.

The traces of transition state resonances which we found in
the H+ D, reaction are seen here again, but even less clearly
pronounced. Only the first resonance of thg-o,,,=0 Cross
section can be clearly recognized. The second derivatives of
the rotational cross sections as a function of the total energy
are shown in Figure 7. Comparing Figure 7 with Figure 3 one
again notes that the resonance structure of the B, system
is much weaker than for the H D, system.

L L

0.2 0.4 0.6 0.8 1.0 1.2

0.0 : -

Etrans [eV]

Figure 6. Initial-state-selected cross sectiong,,, for the D+ Ha(vo
= 0) reaction as a function of translational energy= 0: solid line,
jo=1: dotted linejo = 2: dashed lingjp = 3: long-dashed lingo = 4:
dot—dashed line).

4. Summary

The influence of the initial rotation on reactivity for the-H
D, and D + H; systems has been investigated. The QM
cumulative initial-state-selected cross sections for the initial
guantum numbersy = 0 andjo = 0,...,4 have been calculated
employing the MCTDH wave packet propagation scheme. The

observed from Figure 5, where the partial cross sections for cg|cylations for the H+ D, system showed that the initial

the channels defined by, = 0,J = 0 andj, = 0,1,2 are shown.
3.2. D+ Hy(wo = 0) — DH + H Reaction. The upper curve

rotation enhances the reactivity of the system, which is in
agreement with previous QCG%#23and QM® calculations. The

(scale on the left) of Figure 1 displays the rotationally averaged comparison of the present results with previous CS results,

(T = 300 K) reaction cross sections for thetbHx(vo = 0) —

where the opposite effect has been detected, leads to the

DH + H reaction as a function of translational energy. Due to conclusion that theK-coupling, which is neglected in CS

the higher zero-point energy of the Mibration, the threshold

is lowered as compared to the-H D, system.

approximation, is responsible for the effect. In the case of the
D + H, system, a negative effect of the initial rotation on the

Figure 6 shows the initial-state-selected integral cross sectionsreactivity has been found for translational energies between 0.35

for vo = 0 andjo = 0,...,4 from the threshold up ®ans = 1.3

eV. One may infer from Figer 6 a mixed effect of the rotational

and 0.77 eV. This is also in agreement with the previous
QCT923 calculations. Furthermore, an excellent agreement of

excitations on the reactivity. For translational energies between MCTDH and QM exact calculations is demonstrated.

0.35 and 0.77 eV an initial Hrotation decreases the reactivity

The signature of transition state resonances has been found

but for other energies it increases the reactivity. This result was in the initial-state-selected total reaction cross sections. The

also found by QCT calculations reported by Aoiz efalyhere

resonances of the H D, system are pronounced in the= 0
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cross section but are quenched for largemd disappear fgp
= 4. For the D+ H, system the presence of these resonances

Sukiasyan and Meyer

Legendre functions; i.e.,

N

is even less clearly pronounced.

In contrast to the CS results, the resonance structure is not
completely washed out by the summation over the tht&inly
the partial cross sections corresponding to the snial if j +] + k=< 2N — 1. Sincej = |K| there are fewer exact
contribute to the final resonance structure. We find that the crossquadratures as for Legendre polynomials (ikes= 0), but as
sections for the same initial magnetic quantum numingr long ask < N/2, say, the above relation is very useful. Note
Ojomye bUL differentjo, show transition state resonance maxima that the grid point®), and the weightsv, are most conveniently
at identical total energies. The location of the maxima differ generated by diagonalizing cds in the basis se{P}}™%,
for different mo, in particular for odd and evemy,. We show ~ Wherejmax= N — 12764
that these resonances correspond to the bending motion of the Next, a set of transformation matrixes relating basis functions
transition state, rather than to the other modes. Despite its veryand grid points is introduced:
weak appearance, this is, to our knowledge, the first transition K — 2K
state resonance reported for a calculation on the total cross Uje =W, “Pj(cosb,)
section of the H+ H, system or its isotopic variants.

The reaction cross sections thermally averaged over rotational
states afT = 300 K have been computgd for both rea_ctlve i < jmax there are onlymax+ 1 — K| rows butN = jmax + 1
systems under study. For the-H D, reactive system at high  .4;;mns. To makeJX square and unitary we Igrun from |K|
translational energies, a significant difference has been foundtojmaer IK| and successively Schmidt-orthonormalize the rows
between the thermally averaged cross sections calculated usin?max+ 1,...jmax+ |K| to the lower ones. This ad hoc procedure
the CS approximation and the present calculation using the exacfs jystified as long as the basis set is large enough such that the
kinetic energy. functions for P have negligible contributions to the wave

function forj > jmax
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[Pf|cos’ 0|P =

o=

w,P(0,)cos 0,P(0,)  (29)

(30)

The rows ofU}fl are orthonormal as long g§s< jmax This
follows immediately from eq 29. However, if one restri¢t®

(DFG) through the Graduiertenkolldgodellierung und Wis-
senschaftliches Rechnen in Mathematik und Naturwissen-
schaften

Appendix

Extended Legendre DVR.In the MCTDH program the
operation of Hamiltonian terms on the spf’s is accomplished
by standard DVR's. For the two-dimensional spf€)(0,K),
however, a special two-dimensional DVR is needed as there
are no (separable) product DVR’s that correctly represent the
kinetic energy operatof® (see eq 5). This is because of the
singular termK?/sir? 6. In the following we shall derive the
two-dimensional extended Legendre DVR, called “K-Leg-DVR”
for brevity. Here we largely follow the work of Corey, Tromp,
and Lemoiné?3

We start by defining thé2-normalized associated Legendre
functions

P = 1y [E 52 eoso)

which will serve as a family of basis sets underlying the K-Leg-
DVR.

The effect of the operatiojd andj.. on these basis functions
is well-known:

(26)

PP =j( + 1P (27)

1LPC=Vi( + 1) — KK £ 1P (28)
Corey, Tromp and Lemoine realized that using the grid points
0, and the weightsv, of the standard Gauss-Legendre quadra-
ture may yield exact results even for quadratures essociated

K| +imax

2(@,BK) = z{ UjeiG + DU (31)
J=IK]

min(K|,[K+1])+jmax

. (@BK) = ; UG+ 1) — KK + 1)U
j=max(K]|,|K+1])

(32)
(33)

J-(afK) =] (B,K = 1)

The effect of the operatoid andj. on ¢® is finally given
by

N
(P)(0,.K) = ;j%a.ﬂ,K)(p“’(eﬁ,K) (34)

N
(290K £ 1) = ;Ji(a,ﬂ,K)cv@(Hﬁ,K) (35)

The matrix operations above have to be performed for &ch
out of theK-grid. For diatomic target molecules one may use
symmetry to reduce the number @fgrid points by a factor of

2. This can be accomplished by using only odd or gi&when
expandingp® in the set{ P[}.27
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